Contents

AFM "Golden" Silicon Probes		4 - 18
General Information		4
Semicontact/noncontact pro	bes	6
	NSG01 series	6
	NSG03 series	7
	NSG10 series	8
	NSG30 series	9
Force modulation probes		10
	FMG01 series	10
Contact probes		11
	CSG01 series	11
	CSG10 series	12
Conductive probes		13
Magnetic probes		14
Tipless probes		16
Bare probes		17
Diamond coated conductive probes		18-21
	DCP11 series	20
	DCP20 series	21
AFM "ETALON" composite probes		22 - 24
	HA_NC series	24
AFM "Whisker Type" FEB Tips (NSC05, CSC05	series)	25 - 28
AFM Super Sharp DLC Tips		29-31
SNOM probes and accessories		32-36
SNOM Probes		32
Tuning forks		35
SNOM test grating SNG01		36
Calibration gratings		37 - 42
TGZ grating serias		37
TGQ1 test grating		38
TGT1 test grating		39

	TGX1 test grating	40
	TGG1 test grating	41
	TDG01 diffraction gratings	42
Calibration gratings	sets	43 - 49
	TGS1 grating set	43
	PTB traceable TGS1grating set	45
	TGS2 grating set	47
	TGSFull grating set	48
Test samples		50 - 54
	HOPG for SPM applications	50
	DNA test sample	52
	STEPP test sample	53
Table of available pr	obes	55-57
Quick selection table	e by applications	58-59
Products by groups	·	60-67

Our Web shop is open!

You are welcome to buy any accessories at www.ntmdt-tips.com

Exclusively from NT-MDT - famous grating TGT1 for tip characterization, super sharp DLC tips, and PTB certified gratings. Also a broad choice of probes, calibration standards and test samples is available.

AFM "Golden" Silicon Probes

Au coating is chemically stable and suitable for air and liquid AFM measurements

General Information

Substrate

- Material: Single Crystal Silicon, N-type, resistivity 0.01-0.025 Ohm-cm, Antimony doped.
- Standard chip size: 1.6x3.4x0.3 mm.
- Cross-section is trapezium-shape.
- High reflective chemically stable Au back side coating (reflectivity is 3 times better in comparison with uncoated probes).
- Compatible with the most of commercial AFM devices.
- The base silicon is highly doped to avoid electrostatic charges.

Cantilever

- Rectangular shape.
- Cross-section is trapezium-shape.
- Backside width is given in probes specifications.
- Available for contact, semicontact and noncontact modes.
- Tip is set on the controlled distance 5-20μm from the free cantilever end.

Tip

- Total tip shape is tetrahedral, the last 500nm from tip apex is cylindrical.
- Tip height: 14 16 μm.
- Typical curvature radius of uncoated tips 6 nm, guaranteed 10nm.
- **■** Tip offset: 5 20 μm.
- Tip aspect ratio: 3:1 7:1.
- Front plane angle: 10°± 2°.
- **Back plane angle:** $30^{\circ} \pm 2^{\circ}$.
- Side angle (half): $18^{\circ} \pm 2^{\circ}$.
- Cone angle at the apex: $7^{\circ} 10^{\circ}$.

"Golden" Silicon Probes are available:

- with Au and Al reflective coating
- with PtIr, TiN, Au, diamond doped conductive coating
- with CoCr magnetic coating
- with no coatings (bare) •
- tipless

Probes are packaged in GelPak® boxes. (GelPak® is a registered trade mark of Vichem Corporation)

Guaranteed product yield is better than 90%.

Probe series name

Recommended measuring mode:

- N noncontact. semicontact
- C contact

Probe series

Tip coating

NSG01/TIN

5

Semicontact/ noncontact probes

NSG01 series

Substrate specification

Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped
Chip size	3.4x1.6x0.3mm
Reflective side	Au
Cantilever number	1 rectangular
Available coatings	conductive PtIr, TiN, Au;
	magnetic CoCr
Available probes	bare, tipless, with Al reflective
	coating

Code for ordering

NSG01/15 15 separated chips NSG01/50 50 separated chips NSG01W Minimum 410 chips

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant		Cantilever Resonant Force constant			ant,
length,	width,	thickness,	frequency, kHz		N/m			
L±10 µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max
125	30	2.0	87	150	230	1.45	5.1	15.1

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical		Tip height (t)
Tip height	14 – 16 μm		+To officet
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 - 7:1	W.	
Front plane angle	10°± 2°		▲ 1
Back plane angle	30°± 2°		tar in h
Side angle (half)	18°± 2°	for some	
Cone angle at the	7° - 10°		Tip front view
apex			

NSG03 series

Substrate specification		Code for ordering		
Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped	NSG03/15	15 separated chips	
Chip size	3.4x1.6x0.3mm	NSG03/50	50 separated	
Reflective side	Au		chips	
Cantilever number	1 rectangular	NSG03W	Minimum 410	
Available coatings	conductive PtIr, TiN, Au		chips	
Available probes	bare, tipless, with Al reflective			
	coating			

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant		Force constant,			
length,	width,	thickness,	frequency, kHz		N/m			
L±10 µm	W±5 µm	T±0,5 μm	min	typical	max	min	typical	max
135	30	1.5	47	90	150	0.35	1.74	6.1

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical		Tip height (h)
Tip height	14 – 16 μm		
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 - 7:1		
Front plane angle	$10^{\circ} \pm 2^{\circ}$		▲ T.
Back plane angle	$30^{\circ} \pm 2^{\circ}$		10 200
Side angle (half)	18°± 2°	for a second	·
Cone angle at the	7° - 10°		Tip front view
apex			

NSG10 series

Substrate specification		Code for ordering		
Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped	NSG10/15	15 separated chips	
Chip size	3.4x1.6x0.3mm		50 separated	
Reflective side	Au	NSG10/50	chips	
Cantilever number	1 rectangular		Minimum 410	
Available coatings	conductive PtIr, TiN, Au	NSG10W	chips	
Available probes	bare, tipless, with Al reflective			
-	coating			

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant	Force constant,	
length,	width,	thickness,	frequency, kHz	N/m	
L±10 µm	W±5µm	T±0,5 μm	min typical max	min typical max	
95	30	2.0	140 240 390	3.1 11.8 37.6	

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical	Tip height (A	Front plane Back plane
Tip height	14 – 16 μm	-	
Curvature radius	typical 6 nm, guaranteed 10nm		Tip offset
Tip offset	5 - 20 μm		1
Tip aspect ratio	3:1 - 7:1		
Front plane angle	$10^{\circ} \pm 2^{\circ}$		A 1
Back plane angle	$30^{\circ} \pm 2^{\circ}$		18-18 1
Side angle (half)	18°± 2°		
Cone angle at the	7° - 10°		Tip front view
apex			

NSG30 series

Substrate specification		Code for ordering		
Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm Antimony doped	NSG30/15	15 separated	
Chip size	3.4x1.6x0.3mm	NSG30/50	50 separated	
Reflective side	Au		chips	
Cantilever number	1 rectangular	NSG30W	Minimum 410	
Available coatings	conductive PtIr, TiN, Au		chips	
Available probes	bare, tipless, with Al reflective		-	
-	coating			

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant		For	ce consta	ant,	
length,	width,	thickness,	frequency, kHz		Iz N/m			
L±10 µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max
125	40	4.0	240	320	440	22	40	100

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical		Tip height (h)
Tip height	14 – 16 μm		
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 – 7:1		
Front plane angle	10°± 2°		▲ 1
Back plane angle	$30^{\circ} \pm 2^{\circ}$		ur un h
Side angle (half)	18°± 2°	from 2	
Cone angle at the	7° - 10°		Tip front view
apex			

Force Modulation probes

FMG01 series

Substrate specification

			0
Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped	FMG03/15	15 separated chips
Chip size	3.4x1.6x0.3mm	FMG03/50	50 separated
Reflective side	Au		chips
Cantilever number	1 rectangular	FMG03W	Minimum 410
Available coatings	conductive PtIr, TiN, Au;		chips
	magnetic CoCr		
Available probes	bare, tipless, with Al reflective		
	coating		

Code for ordering

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant		For	ce const	ant,	
length,	width,	thickness,	fre	quency,	kHz		N/m	
L±10 µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max
225	32	2.5	50	60	70	1	3	5

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical		Tip height (h)
Tip height	14 – 16 μm		+ Tig officit +
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 – 7:1		
Front plane angle	10°± 2°		▲ T
Back plane angle	$30^{\circ} \pm 2^{\circ}$		ter ta h
Side angle (half)	18°± 2°	for the	
Cone angle at the	7° - 10°		Tip front view
apex			

Contact probes

CSG01 series

Substrate specifi	Code for ordering		
Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped	CSG01/15	15 separated chips
Chip size	3.4x1.6x0.3mm		50 separated
Reflective side	Au	CSG01/50	chips
Cantilever number	1 rectangular		Minimum 410
Available coatings	conductive PtIr, TiN, Au	CSG01W	chips
Available probes	bare, tipless, with Al reflective		
	coating		

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant		Force constant		ant,	
length,	width,	thickness,	frequency, kHz		N/m			
L±15µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max
350	30	1.0	4	9.8	17	0.003	0.03	0.13

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical	R A	Tip height (%)
Tip height	14 – 16 μm		+ Tooffeet
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 - 7:1		
Front plane angle	$10^{\circ} \pm 2^{\circ}$		
Back plane angle	$30^{\circ} \pm 2^{\circ}$		ter ter
Side angle (half)	18°± 2°	and the second second	
Cone angle at the	7° - 10°		Tip front view
apex			

CSG10 series

Substrate specification		Code for ordering		
Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped	CSG10/15	15 separated chips	
Chip size	3.4x1.6x0.3mm	CSG10/50	50 separated	
Reflective side	Au		chips	
Cantilever number	1 rectangular	CSG10W	Minimum 410	
Available coatings	conductive PtIr, TiN, Au		chips	
Available probes	bare, tipless, with Al reflective			
	coating			

Cantilever specification

Cantilever	Cantilever	Cantilever	Resonant		Resonant I		For	ce consta	ant,
length,	width,	thickness,	frequency, kHz		N/m				
L±10 µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max	
225	30	1.0	8	22	39	0.01	0.11	0.5	

Tip shape	tetrahedral, the last 500nm	6	Front plane Back plane
	from tip apex is cylindrical		Tip height (%)
Tip height	14 – 16 µm	And a	*Tooffiet
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 - 7:1		
Front plane angle	$10^{\circ} \pm 2^{\circ}$		
Back plane angle	$30^{\circ} \pm 2^{\circ}$		10 10 h
Side angle (half)	18°± 2°	for ser	
Cone angle at the	7° - 10°		Tip front view
apex			

Conductive probes

NT-MDT offers 4 conductive coatings: Au, PtIr, TiN, diamond doped.

- All noncontact/semicontact, force modulation and contact probes are available with Au, PtIr, TiN conductive coatings.
- Probes DCP20 and DCP11 are with diamond doped conductive coating (see detailed information about this product in the chapter "Diamond Coated Conductive Probes")

Tip coating	Thickness	Adhesion layer	Tip curvate radius
Au	35 nm	Ti(25A)	
Pt	25 nm	Cr(25A)	~ 35 nm
TiN	25 nm	No adhesion layer	

Contact probes with Au, Pt, TiN conductive coatings:

Conductive coating	Available with	Code for ordering		
	probe series	15 separated chips	50 separated chips	
Au	CSG10	CSG10/Au/15	CSG10/Au/50	
	CSG01	CSG01/Au/15	CSG01/Au/50	
PtIr	CSG10	CSG10/Pt/15	CSG10/Pt/50	
	CSG01	CSG01/Pt/15	CSG01/Pt/50	
TiN	CSG10	CSG10/TiN/15	CSG10/TiN/50	
	CSG01	CSG01/TiN/15	CSG01/TiN/50	

Semicontact/noncontact probes with conductive coatings:

Conductive coating	Available with	Code for ordering		
	probe series	15 separated chips	50 separated chips	
	NSG10	NSG10/Au/15	NSG10/Au/50	
	NSG01	NSG01/Au/15	NSG01/Au/50	
Au	NSG30	NSG30/Au/15	NSG30/Au/50	
	NSG03	NSG03/Au/15	NSG03/Au/50	
	FMG01	FMG01/Au/15	FMG01/Au/50	
	NSG10	NSG10/Pt/15	NSG10/Pt/50	
	NSG01	NSG01/Pt/15	NSG01/Pt/50	
PtIr	NSG30	NSG30/Pt/15	NSG30/Pt/50	
	NSG03	NSG03/Pt/15	NSG03/Pt/50	
	FMG01	FMG01/Pt/15	FMG01/Pt/50	
	NSG10	NSG10/TiN/15	NSG10/TiN/50	
	NSG01	NSG01/TiN/15	NSG01/TiN/50	
TìN	NSG30	NSG30/TiN/15	NSG30/TiN/50	
	NSG03	NSG03/TiN/15	NSG03/TiN/50	
	FMG01	FMG01/TiN/15	FMG01/TiN/50	

Magnetic probes

NT-MDT offers NSG01 and FMG01 probe series with Co/Cr magnetic coating. Top Cr coating protects the magnetic layer from oxidation.

Thickness of magnetic coatings is about 40nm.

Tip curvature radius after coating is 30-40nm.

Coating	Type of magnetic coating	Available probe series
Co/Cr	middle	NSG01, FMG01

SPM magnetic image of hard disk (capacity 200GB) obtained by probe NSG01/Co (resolution is about 60nm).

Substrate specification

Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony
	doped.
Chip size	3.4x1.6x0.3mm
Reflective side	Au
Cantilever number	1 rectangular
Coating	CoCr magnetic coating

Cantilever specification

NSG01 series

Cantilever length,	Cantilever width,	Cantilever thickness,	Resonant frequency, kHz		Force constant, N/m			
L±10 µm	W±5 µm	T±0,5 μm	min	typical	max	min	typical	max
125	30	2.0	87	150	230	1.45	5.1	15.1

FMG01 series								
Cantilever	Cantilever	Cantilever]	Resonan	ıt	For	rce const	t ant ,
length,	width,	thickness,	fre	quency, I	kHz		N/m	
L±10 µm	W±5 μm	T±0,5 μm	min	typical	max	min	typical	max
225	32	2.5	50	60	70	1	3	5

Tip specification

Tip shape	tetrahedral, the last 500nm	Front plane Back plane
	from tip apex is cylindrical.	Tip height (h)
Tip height	14 – 16 µm	
Curvature radius	~ 40 nm	Tip office +
Tip offset	5 - 20 µm	The side view
Tip aspect ratio	3:1 - 7:1	
Front plane angle	10°± 2°	
Back plane angle	$30^{\circ} \pm 2^{\circ}$	
Side angle (half)	18°± 2°	
Cone angle at the	7° - 10°	Tip front view
apex		

NSG01/Co/15	15 separated chips with Co/Cr coating
FMG01/Co/15	
NSG01/Co/50	15 separated chips with Co/Cr coating
FMG01/Co/50	

Tipless probes

Probe series:

noncontact/semicontact	NSG10, NSG01, NSG30, NSG03
force modulation	FMG01
contact	CSG10, CSG01

are available without tips.

Semicontact/noncontact	
NSG10/tipless/15	
NSG01/tipless/15	
NSG30/tipless/15	15 separated chips
NSG03/tipless/15	
NSG10/tipless/50	50 separated chips
NSG01/tipless/50	JU Separated chips
NSG30/tipless/50	
NSG03/tipless/50	
Force modulation	
FMG01/tipless/15	15 separated chips
FMG10/tipless/50	50 separated chips
Contact	
CSG10/tipless/15	
CSG01/tipless/15	15 separated chips
CSG10/tipless/50	50 separated chips
CSG01/tipless/50	

Bare probes

Probe series:

noncontact/semicontact	NSG10, NSG01, NSG30, NSG03
force modulation	FMG01
contact	CSG10, CSG01

are available without any coatings (no reflective, no conductive coating).

Semicontact/noncontact		Contact		
NSG10/bare/15		CSG10/bare/15	15 separated chips	
NSG01/bare/15	15 separated chips	CSG01/bare/15		
NSG30/bare/15		CSG10/bare/50		
NSG03/bare/15		CSG01/bare/50	50 separated chips	
NSG10/bare/50				
NSG01/bare/50	50 separated chips			
NSG30/bare/50				
NSG03/bare/50				

Force modulation	
FMG01/bare/15	15 separated chips
FMG10/bare/50	50 separated chips

AFM "Golden" Silicon Probes

Diamond coated conductive probes

The ideal probe for AFM Oxidation Nanolithography

Stable and nondestructive, wear resistant probe with conductive diamond coating allows you to make as many images as you want!

Coating Specification:

- Thickness of diamond coating is about 70nm.
- Diamond coating is doped with nitrogen.
- Film resistivity: 0,5-1 Ohm*cm
- Tip curvature radius after coating is about 50-70nm.
- Recommended for electrical modes

• Specially recommended for Oxidation Nanolithography*.

* We made a special "survival" test - almost 50 LAO Lithography images of Mona Lisa were obtained by using only one tip. It was not destroyed even after such a hard work. After 50 attempts it was still "alive".

> LAO Nanolithography was made on Ti film in Semicontact mode by NSG20 probe with conductive diamond coating, NTEGRA Aura system. Scan size: 8x8µm.

The thickness of lithography line is measured after the "survival" test. It is about 22nm.

AFM "Golden" Silicon Probes

Diamond coated conductive probes

DCP11 series

Substrate specification

Chip size	3.6x1.6x0.4mm
Reflective side	Au
Cantilever number	2 rectangular
Coatings	Diamoned doped with nitrogen for conductivity
Thickness of diamond coating	~ 70nm

Cantilever specification

Cantilever length,	Cantilever width,	Cantilever thickness, µm			Resonant frequency, kHz			Force constant, N/m		
L±5µm	W±3µm	min	min typical ma		min	typical max		min	typical	max
100	35	1.7	2.0	2.3	190	255	325	5.5	11.5	22.5
130	35	1.7	2.0	2.3	115	150	190	2.5	5.5	10

Tip specification

Aspect ratio	3:1
Tip height	10-15 µm
Tip cone angle $arphi$	≤22°
Typical curvature	50-70nm
radius	

DCP11/15	15 separated chips
DCP11/50	50 separated chips

Diamond coated conductive probes

DCP20 series

Chip specification

Chip size	3.6x1.6x0.4mm
Reflective side	Au
Cantilever number	1 triangular
Coating	diamond doped with nitrogen for conductivity
Thickness of diamond coating	~70nm

Cantilever specification

Cantilever	Cantilever	Cantilever			R	esonant	t	Force constant,			
length,	width,	thickness, µm			frequency, kHz			N/m			
L±5µm	W±3µm	min	min typical max		min	typical	max	min	typical	max	
90	60	1.7	2.0	2.3	260	420	630	28	48	91	

Tip specification

Aspect ratio	3:1
Tip height	10-15µm
Tip cone angle $arphi$	≤22°
Typical curvature	50-70nm
radius	

DCP20/15	15 separated chips
DCP20/50	50 separated chips

the next generation of AFM probes

Advanced features:

- ? High aspect ratio tip
- ? Resonant frequency is specified with high accuracy
- ? Enhanced reflection
- ? Economic price

Why is the tip aspect ratio so high?

Because the probe geometry allows to reduce significantly the tip basement diameter while maintaining the tip height.

In addition the tip itself is sharp - typical curvature radius is 10 nm.

How is the resonance frequency specified with such high accuracy?

Because the patented technology applied for cantilever manufacturing allows strict control of the lever thickness ($\pm 0.07 \ \mu m$ only!).

Moreover a special frequency stabilizer guarantees a high accuracy of the lever length ($\pm 2~\mu m).$

Why is the reflection so high?

Because the cantilever back-side is almost atomically smooth.

Roughness* is less than 2nm!

Reflection is further increased by Au coating.

*RMS on the area 20x20 μm as measured by AFM

The new High Accuracy "ETALON" probe series have polysilicon levers with silicon high resolution tips. Due to the technology used for lever manufacturing they have very reproducible parameters that leads to exact values for probe resonant frequency and force constant (typical dispersion $\pm 20\%$).

Moreover the new High Accuracy "ETALON" probes have low noise when operating in contact and noncontact AFM modes. It is possible due to the fact that the polysilicon material in the lever is softer than the silicon one usually used for probes production. Polysilicon levers have a shorter length compared to silicon probes at the same force constant value.

High Accuracy "ETALON" probes have high a spect ratio silicon tips (cone angle $\varphi22^\circ$) with a typical curvature radius of 10 nm.

Comparison between polysilicon and silicon probes

Comparative parameters	Polysilicon	Silicon		
Thickness deviation	$\pm 0.07 \mu m$	±0.3µm		
Roughness of reflective surface	2nm	20nm		
Lever material	Soft, flexible	Fragile after dopping		
Resonant frequency	Typical dispersion $\pm 20\%$	Till ±100%		
Force constant	Typical dispersion $\pm 20\%$	Till ±100%		

High Accuracy NONCONTACT "ETALON" probes HA_NC series

- ? Standard chip size: 1.6x3.6x0.45 mm.
- ? High reflective Au coating.
- ? Typical curvature radius of a tip: 10 nm.
- ? Total tip height : 9–16 μm.
- ? Each chip has two RECTANGULAR springs.
- ? Recommended for noncontact/semicontact modes.
- ? Packaged in GelPak® boxes.

GelPak® is a registered trade mark of Vichem Corporation

Unique color and NT-MDT logo on each cantilever chip

Specification for HA_NC probes

Chip thickness	0.45 mm
Reflective side	Au
Spring number	2
Tip height h1	5–10 μm
Tip base height h2	4–6 µm
Ratio h1/h2	>1
Tip aspect ratio	5:1
Cone angle φ	≤22°
Curvature radius of a tip	typical 10 nm

Cantilever series	Cantilever (Cantilever	Cantilever thickness H, µm			Resonant	frequency, kHz	Force constant, N/m		
	series	Shring	L±2µm	W±3µm	min	typical	max	Nominal	Typical disper- sion	Nominal	Typical disper- sion*
HA	UA NC	Α	87	32	1.68	1.75	1.82	200	±10%	5.8	±20%
	IIA_NC	В	117	32	1.68	1.75	1.82	120	±10%	3.4	±20%

HA_NC/15	15 separated chips
HA_NC/50	50 separated chips

AFM "Whisker Type" Focused Electron Beam (FEB) Tips

Not even every surface of interest has a plain structure.Moreover, in most cases it may have a rather complicated topography, with many ups and downs. To investigate such features properly matching this task probe must be used.A standard probe has a limited size and in case of narrow gaps cannot fit them (too short and wide). Also it's true when the height's difference is greater than the probe's dimensions.

NT-MDT offers a special probe, designed for studying deep holes, trenches and narrow gaps. It differs from any standard probe by having at the very end a long and slim "whisker" (Fig. 1).

This small modification has a great impact in terms of making the probe a perfect instrument for investigation of narrow gaps. It gives the following advantages:

To profile a shape of sidewalls. Due to a variable angle of inclination (see Fig.2), no more mechanical restriction! The "whisker" tips go deeper inside narrow gaps when the standard cantilevers fail to measure!

For imaging of the trench's bottom. That is not possible using a standard probe due to its size's limitations, but because of the very high aspect ratio of "Whisker" tip we can do it easily.

Let's see how it works on a simple example.

The structure shown on the Fig.3 was investigated by two different probes – standard probe and probe with "Whisker" tip.

Fig. 1 "Whisker Type" probes specially designed for measurement of samples with near vertical sidewalls

Fig. 2 Any angle of inclination α you need to match your SPM holder specification can be produced. Just specify the angle of inclination you want

Fig. 3 SEM image of the structure. Dark places correspond to holes, while light colors correspond to absence of copolymer. Sample: Ebeam lithography mask for fabrication SET devices by shadow evaporation technique. V.A. Krupenin, Cryoeletronics Lab., Physical department of MSU,Moscow, Russia

Graphical representation of the experiment

On the Fig.4 SPM images of the structure obtained by different probes are shown – standard probe (on the left, Fig.4) and probe with "Whisker" tip(on the right, Fig.4). The width of gaps was about 100 nm. These images show the main advantage of the whisker: it goes much deeper and gives a uniform distribution of pattern, while the standard one fails even to reach the bottom!

Fig. 4 On the left – results of imaging by the standard probe, the depth was only 170 nm reached. While the wisker achieved the bottom (530 nm) and showed a uniform distribution.

Calibrated SEM photos

Calibrated SEM photo for each "Whisker Type" tip is to let you know the real shape of the FEB tip.

Fig. a: SEM image of FEB tip specially designed for measurement of samples with near vertical sidewalls. Fig. b: SEM image of four FEB tips grown on the silicon tip in accordance with preset sketch.

FEB tip specification

Material	carbin (carbon			
	modification)			
Aspect ratio	better than 10:1			
Angle φ	≤10°			
Typical curvature	10nm			
radius				
Angle of inclination α	20°±1°; 10°±1°			

Substrate specification

Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony
	doped.
Chip size	3.4x1.6x0.3mm
Reflective side	Au
Cantilever number	1 rectangular

AFM "Whisker Type" Tips

MCCOF

Cantilever specification

112	NSC05 series – for semicontact/noncontact mode								
C	antilever	Cantilever	Cantilever Resonant		Resonant		For	ce const	ant,
	length,	width,	thickness,	frequency, kHz		N/m			
L	.±10 μm	W±5 µm	T±0,5 μm	min	typical	max	min	typical	max
	95	30	2,0	140	240	390	3,1	11,8	37,6

CSC05 series – for contact mode

Cantilever	Cantilever	Cantilever	Resonant		Cantilever Resonant		For	ce const	ant,
length,	width,	thickness,	free	quency, l	кНz		N/m		
L±10 µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max	
225	30	1,0	8	22	39	0,01	0,11	0,5	

Silicon tip specification

Tip shape	tetrahedral, the last 500nm	6	Front plane Back plane
	from tip apex is cylindrical		Tip height (h)
Tip height	14 – 16 μm		Tip officet
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 - 7:1	71	
Front plane angle	$10^{\circ} \pm 2^{\circ}$		T
Back plane angle	$30^{\circ} \pm 2^{\circ}$		ter ta h
Side angle (half)	18°± 2°	for a	
Cone angle at the	7° - 10°		Tip front view
apex			

NSC05/5	5 separated chips of "Whisker Type" probes for noncontact mode
CSC05/5	5 separated chips of "Whisker Type" probes for contact mode

AFM Super Sharp Diamond-like Carbon Tips

Super sharp diamond-like carbon (DLC) tips* with typical curvature radius 1nm are extremely useful for obtaining high resolution on objects with sizes of several nanometers. DLC tips have very long lifetime due to the high material durability. To guarantee 20 nm working length of DLC tips TEM is used. 10% from total number of probes in the batch are selected for testing. At least 80% of those probes should have the only DLC tip which length is exceeded by 20nm others DLC tips on the same probe. In this case the whole batch is considered as passed the TEM test.

DLC tip specification:

Material	diamond-like carbon
Curvature radius	1-3nm
Working length	≥20nm
Probe series for growing	NSG01, NSG10**

*"Dmitry Klinov and Sergei Magonov, True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes, Applied physics letters, 84 (14), (2004) 2697-2699."

** - DLC tips can be grown on any other probe series by request

SPM image of DNA deposited on HOPG is obtained by DLC tip. **DNA size (~3nm) is nearly equal to the real size!** Standard probes provide DNA imaging with size about 10-15nm

SPM image of unfolded DNA deposited on mica obtained by DLC tip by the NTEGRA Vita system

Substrate specification

Material	Single Crystal Silicon, N-type, 0.01- 0.025 Ohm-cm, Antimony doped.
Chip size	3.4x1.6x0.3mm
Reflective side	Au
Cantilever number	1 rectangular

Cantilever specification

NSG01_DLC	series							
Cantilever length	Cantilever width	Cantilever thickness	Resonant frequency kHz		Force constant,		ant,	
L±10 µm	W±5 μm	T±0,5 μm	min	typical	max	min	typical	max
125	30	2,0	87	150	230	1,45	5,1	15,1

NSG01 DLC series

NSG10_DLC series

Cantilever length,	Cantilever width,	Cantilever thickness,	Resonant frequency, kHz		Resonant Force Trequency, kHz		orce constant, N/m	
L±10 µm	W±5µm	T±0,5 μm	min	typical	max	min	typical	max
95	30	2,0	140	240	390	3,1	11,8	37,6

Silicon tip specification

Tip shape	tetrahedral, the last 500nm from tip apex is cylindrical	R	Tip height (h)
Tip height	14 – 16 μm		Tip offuet
Curvature radius	typical 6 nm, guaranteed 10nm		Tip side view
Tip offset	5 - 20 μm		
Tip aspect ratio	3:1 - 7:1		
Front plane angle	$10^{\circ} \pm 2^{\circ}$		
Back plane angle	$30^{\circ} \pm 2^{\circ}$		ar ar h
Side angle (half)	18°± 2°	- Can Ser-	
Cone angle at the	7° - 10°		Tip front view
apex			

NSG01_DLC/10 NSG10_DLC/10	10 separated chips for noncontact mode
NSG01_DLC/50	50 separated chips for poncentact mode
NSG10_DLC/50	so separated chips for honcontact mod

SNOM probes and accessories

SNOM probes

SNOM probes specification:

Material	single mode optical fiber Nufern
Tip coating	vanadium (20nm) / aluminum (70nm).
Tip aperture	50/100 nm
(diameter uncoated by Al)	
Tip curvature radius	~100nm
Tip angler	25-30 degrees
Maximum optical input power	400 microwatt
Sharpening method	chemical etching *

* This method gives the optical efficiency $10^2 - 10^4$ times better than those obtained by mechanical pulling.

Geometrical & mechanical fiber specification:

Clad Diameter	$125.0 \pm 1.5 \mu\text{m}$
Coating Diameter	$245\pm15~\mu m$
Core-Clad Concentricity	<0.5 µm
Coating/Clad Offset	≤5 μm
Coating Material	UV Cured, Dual Acrylate
Operating Temperature	-55 to +85 °C
Short-Term Bend Radius	$\geq 6 \text{ mm}$
Long-Term Bend Radius	≥ 13 mm
Proof Test Level	\geq 200 kpsi (1.4 GN/m ²)

SNOM probe characteristics:

Characteristic	Probe type				
	MF001	MF002	MF003	MF004	MF005
Basic Nufern fiber	405-HP	460-HP	630-HP	780-HP	980HP
Operating	400-550	450-600	600-770	780-970	980-1600
wavelength, nm					
Mode Field	$3.5 \pm 0.5 \ \mu m$	$3.5 \pm 0.5 \ \mu m$	$4.0 \pm 0.5 \ \mu m$	$5.0 \pm 0.5 \ \mu m$	$4.2 \pm 0.5 \ \mu m$
Diameter	@ 515 nm	@ 515 nm	@ 630 nm	@ 850 nm	@ 980 nm
					$6.8 \pm 0.5 \ \mu m$
					@ 1550 nm
Second Mode	370 ± 20	430 ± 20	570 ± 30	730 ± 30	920 ± 30
Cut-Off, nm					
Optical efficiency	6x10 ⁻⁴	4x10 ⁻⁴	1x10 ⁻⁴	4x10-5	4x10 ⁻⁶
100 nm aperture					
Optical efficiency	6x10-5	4x10-5	1x10-5	5x10 ⁻⁶	4x10-7
50 nm aperture					

Uncoated SNOM probe tip

Probe tip with Al coating. Aperture is about 70nm.

MF001	Set of 10 SNOM probes MF001 type without tuning forks
MF002	Set of 10 SNOM probes MF002 type without tuning forks
MF003	Set of 10 SNOM probes MF003 type without tuning forks
MF004	Set of 10 SNOM probes MF004 type without tuning forks
MF005	Set of 10 SNOM probes MF005 type without tuning forks

Tuning forks

Tuning forks specification:

Resonant frequency	32kHz, 190kHz
Q-factor	3000-5000 (for free tuning fork)
	500-1000 (for glued tuning fork)

Resonant frequency - 32,77kHz

Resonant frequency - 191kHz

Code for ordering

TF001/10 Set of 10 tuning forks

SNOM test grating SNG01

Test Grating For Scanning Near Field Optical Microscope

Grating description

Substrate:	quartz (0.5 mm thickness)
Substrate size:	10x10mm
Rhomb material:	vanadium
Thickness of vanadium layer	about 10nm
Active area:	central diameter 3 mm array
Transmission coefficient through metal coating	≤20%
(rhomb)	
Reflection coefficient from metal coating (rhomb)	≥40%
R curvature of rhomb	\leq 50 nm

Code for ordering

SNG01 SNOM Test grating

Calibration gratings

TGZ grating series

SPM image of grating TGZ series

SEM photo of grating TGZ series

Calibration gratings of TGZ series are intended for Z-axis calibration of scanning probe microscopes and nonlinearity measurements.

Grating description

Structure	- Si wafer
	- the grating is formed on the layer of SiO_2
Pattern types	1- Dimensional (in Z-axis direction)
Step height	TGZ1 - 20±1.5nm*
	TGZ2 - 100±2nm*
	TGZ3 – 500±3nm *
Period	3.00±0.05µm
Chip size	5x5x0.5mm
Effective area	central square 3x3mm

* the average meaning based on the measurements of 5 gratings with the same height (from the batch of 300 gratings) by SPM calibrated by PTB certified grating set TGS1.

Basic step height can vary from the specified one within $\pm 10\%$ (for example TGZ1 grating can have step height 22 ± 1.5 nm)

TGZ1	Height calibration grating (20 ± 1.5 nm)
TGZ2	Height calibration grating $(100\pm 2nm)$
TGZ3	Height calibration grating (500±3nm)
TGQ1 calibration grating

SPM image of TGQ1 grating

Fields of application:

- simultaneous calibration in X, Y and Z directions;
- lateral calibration of SPM scanners;
- detection of lateral non-linearity, hysteresis, creep and cross-coupling effects.

Grating description

Structure	the grating is formed on Si wafer top surface
Pattern types	3-Dimensional array of rectangles
Period	$3.00 \pm 0.05 \text{ mm}$
Height	$20nm \pm 1.5 nm^*$
Rectangle side sizes	1.5±0.15 mm
Chip size	5x5x0.5 mm
Effective area	central square 3x3 mm

* the average meaning based on the measurements of 5 gratings (from the batch of 300 gratings) by SPM calibrated by PTB certified grating TGZ1. Basic step height can vary from the specified one within $\pm 10\%$ (for example step height can be 22 ± 1.5 nm)

Code for ordering

Calibration grating

TGT1 grating for tip characterization

SPM image of TGT1 grating

Fields of application:

- for 3-D visualization of the scanning tip;
- determination of tip sharpness parameters (aspect ratio and curvature radius), tip degradation and contamination control*.

Grating description

Structure:	the grating is formed on Si wafer top surface
Pattern types:	array of sharp tips
Tip angle:	30 degrees
Tip curvature radius:	≤10nm
Period:	3.00±0.05µm
Diagonal period:	2.12µm
Chip size:	5x5x0.5mm
Effective area:	central square 2x2mm
Height, h:	0.3-0.7μm

Code for ordering

TGT1

Tip characterization grating

* - V. Bykov, A. Gologanov, V. Shevyakov. Test structure for SPM tip shape deconvolution. Applied Physics A Materials Science & Processing, Abstract Volume 66 Issue 5 (1998) pp 499-502 Link to download: <u>http://www.ntmdt.ru/Publications/1998/</u>

Calibration grating

TGX1 square grating with negative angles

SPM image of TGX1 grating

SEM photo of TGX1 grating

Fields of application:

- lateral calibration of SPM scanners;
- detection of lateral non-linearity, hysteresis, creep, and cross-coupling effects;
- determination of the tip aspect ratio.

Grating description

Structure	the grating is formed on Si wafer top surface	
Pattern types	chessboard-like array of square pillars with sharp	
	undercut edges	
Period	3.00±0.05µm	
Edge curvature radius	less than 10nm	
Chip size	5x5x0.5mm	
Effective area	central square 3x3mm	
Height	0.3-0.6µm	

Code for ordering

TGX1	Square grating with negative angles

TGG1 triangular grating

SPM image of TGG1 grating

Fields of application:

- SPM calibration in X or Y axis;
- detection of lateral and vertical scanner nonlinearity;
- detection of angular distortion;
- tip characterization.

Grating description

Structure:	the grating is formed on Si wafer top surface	
Pattern types:	1- D array of triangular steps (in X or Y direction) having	
	precise linear and angular sizes	
Edge angle:	70 degrees	
Edge radius:	≤10nm	
Period:	3.00±0.05µm	
Chip size:	5x5x0.5mm	
Effective area:	central square 3x3mm	

Code for ordering

TGG1

Triangular calibration grating

TDG01 diffraction grating

SPM image of TDG01 grating

Diffraction grating TDG01 is intended for submicron calibration of scanning probe microscopes in the X or Y direction.

Grating description

Structure:	 glass wafer the grating is formed on the layer of chalcagenid glass the grating top surface is aluminium
Pattern types:	1- Dimensional (in the X or Y direction)
Pattern height:	> 55 nm and provides good image contrast
Geometry:	parallel ridges
Period:	278 nm (3600 periods/mm)
Accuracy:	±1nm
Size:	diameter 12.5 mm, thickness - 2.5 mm
Effective area:	central diameter 9 mm

Code for ordering

TDG01 D	Diffraction calibration grating
---------	---------------------------------

Calibration grating sets

TGS1 grating set

SPM image of grating TGZ series

SEM photo of grating TGZ series

Calibration grating set TGS1 is intended for Z-axis calibration of scanning probe microscopes and nonlinearity measurements.

Grating set contains 3 gratings TGZ1, TGZ2, TGZ3 with different step heights.

Grating description

Structure	- Si wafer	
	- the grating is formed on the layer of SiO2	
Pattern types	1- Dimensional (in Z-axis direction)	
Step height	TGZ1 - 20±1.5nm*	
	TGZ2 - 100±2nm*	
	TGZ3 - 500±3nm *	
Period	3.00±0.05µm	
Chip size	5x5x0.5mm	
Effective area	central square 3x3mm	

* the average meaning based on the measurements of 5 gratings with the same height (from the batch of 300 gratings) by SPM calibrated by PTB certified grating set TGS1.

Basic step height can vary from the specified one within $\pm 10\%$ (for example TGZ1 grating can have step height 22 ± 1.5 nm)

Code for ordering

TGS1

Calibration grating set

PTB traceable TGZ grating series

SPM image of grating TGZ series

SEM photo of grating TGZ series

Calibration set TGS1 which consists of three gratings TGZ1, TGZ2, TGZ3 is available with PTB traceable certificate (TGS1_PTB).

The gratings TGS1_PTB are measured on the SPM which has been preliminary calibrated using the PTB certified grating set TGS1.

Procedure of grating certification.

Calibration grating sets

Grating set TGS1_PTB is intended for Z-axis calibration of scanning probe microscopes and nonlinearity measurements.

In comparison with TGS1 grating set you will have height meanings with less uncertainties that will help to obtain more reliable scans.

Grating set contains 3 gratings TGZ1, TGZ2, TGZ3 with different step heights.

Grating description

Structure	- Si wafer	
	- the grating is formed on the layer of SiO2	
Pattern types	1- Dimensional (in Z-axis direction)	
Step height	TGZ1 - 20±1nm*	
	TGZ2 - 100±1.2nm*	
	TGZ3 – 500±1.5nm *	
Period	3.00±0.05µm*	
Chip size	5x5x0.5mm	
Effective area	central square 3x3mm	

* the average meaning based on the measurements in 5 points of each grating by SPM calibrated by PTB certified grating set TGS1.

Basic step height can vary from the specified one within $\pm 10\%$ (for example TGZ1 grating can have step height 22 ± 1 nm)

Code for ordering

TGS1_PTB Calibration grating set

TGS2 grating set

Gratings TGZ series

TGG1 grating

Grating set TGS2 consists of 6 calibration gratings: TGZ1, TGZ2, TGZ3, TGX1, TGG1, TGT1.

Fields of application:

- lateral and vertical calibration;
- detection of lateral non-linearity;
- detection of hysteresis, creep, and cross-coupling effects;
- detection of angular distortion;
- for 3-D visualization of the scanning tip;
- determination of tip sharpness parameters (aspect ratio and curvature radius), tip degradation and contamination control.

TGSFull grating set

TGT1 grating

TGX1 grating

Gratings TGZ series

TGG1 grating

TGQ1 grating

TDG01 grating

Grating set TGSFull consists of 8 calibration gratings: TGZ1, TGZ2, TGZ3, TGX1, TGG1, TGG1, TGQ1, TDG01.

Full set of calibration standards for SPM lateral and vertical calibration (including submicron calibration and simultaneuos calibration in X, Y and Z directions), detection of lateral non-linearity, hysteresis, creep, and cross-coupling effects, determination of the tip shape.

Fields of application:

- SPM simultaneuos calibration in X, Y and Z directions;
- submicron SPM calibration in X or Y direction;
- lateral and vertical calibration;
- detection of lateral non-linearity;
- detection of hysteresis, creep, and cross-coupling effects;
- detection of angular distortion;
- for 3-D visualization of the scanning tip;
- determination of tip sharpness parameters (aspect ratio and curvature radius), tip degradation and contamination control

Code for ordering

TGSFullCalibration grating set

Test samples

Highly Oriented Pyrolitic Graphite (HOPG) for SPM applications

SPM image of atomic steps on HOPG

STM atomic resolution on HOPG

Fields of application:

- obtaining critical Z resolution;
- atomic resolution;
- atomic smooth substrate for customer's objects;
- conductive samples for STM.

HOPG ZYA Quality - Typical Mosaic Spread: 0.4-0.7 degree

HOPG piece has a **top working layer** with mosaic spread **0.4-0.7 degree** and a base layer (0+1mm) with not specified mosaic spread quality. To mark the non-working HOPG piece side the one-side scotch is used.

Ordering code	Size*, mm ²	Nominal thickness, mm
GRAS/1.5	10x10	$1.5{\pm}0.2$
GRAS/1.2	10x10	$1.2{\pm}0.2$

*Available piece size - up to 12x12mm²

HOPG ZYB Quality - Typical Mosaic Spread: 0.8-1.2 degrees

HOPG piece has a **top working layer** with mosaic spread **0.8-1.2 degrees** and a base layer $(0 \div 1 \text{mm})$ with not specified mosaic spread quality. To mark the non-working HOPG piece side the one-side scotch is used.

Ordering code	Size**, mm ²	Nominal thickness, mm
GRBS/2.0	10x10	$2.0{\pm}0.2$
GRBS/1.7	10x10	1.7±0.2
GRBS/1.2	10x10	$1.2{\pm}0.2$

**Available piece size - up to 12x12mm²

HOPG ZYH Quality - Typical Mosaic Spread: 3.5-5.0 degrees

HOPG piece has a **top working layer** with mosaic spread **3.5-5 degrees** and a base layer (0.1mm) with not specified mosaic spread quality. To mark the non-working HOPG piece side the one-side scotch is used.

Ordering code	Size***, mm ²	Nominal thickness, mm
GRHS/2.0	10x10	$2.0{\pm}0.2$
GRHS/1.5	10x10	1.7±0.2
GRHS/1.2	10x10	1.2±0.2

***Available piece size - up to 30x30mm²

DNA Test Sample

Typical AFM image of the DNA test sample (obtained in contact mode, humidity 1-10%, Solver BIO, NT-MDT Co.).

Histogram indicating distribution of DNA length*, mean value - 1009 nm, standard deviation - 27nm.

DNA01 is Plasmid pGem7zf+ (Promega), which is linearized with the SmaI endonuclease. Linear DNA molecules (3000 b. p.) are deposited at the freshly cleaved mica. Molecules are uniformly distributed over the surface with the molecular density - 0.5-7 molec./m². The typical DNA length is 1009nm. Recommended humidity for obtaining a good image is 3-5%.

Fields of application:

- Getting started with your work on AFM;
- Example of how to prepare your own DNA samples;
- Estimation of probe tip curvature;
- Humidity test;
- Z-resolution test.

Code for ordering

DNA01 DNA test sample

* software for DNA length calculation can be ordered with code DNA_calc. Download free DEMO version: <u>http://www.ntmdt.com/Products/Software/product83.html</u>

Test samples

Silicon Test Echeloned Pattern (STEPP)

The Silicon Test Echeloned Pattern STEPP for AFM is designed on the base of silicon (111) surface with verified distribution of monatomic steps as main calibrating units for the complex control of AFM set up:

- Height calibration in angstrom and single nanometer intervals on the monatomic steps;
- Using as a substrate for investigations of bio and other objects;
- Precision imaging of nanoobjects.

Specification:

- Chip size 1x4x0.3 mm
- Average interstep distance $\sim 0.5-2 \,\mu m$
- Dislocation of surface from the (111) plate $\sim 1^{\circ}$
- Single monatomic step height 0.314 nm
- Average roughness of the area without monatomic steps 0.06 nm

Instruction manual:

To calibrate AFM on the Z axis the following procedure is to be performed:

Fix the STEPP in the sample holder. 1.

2. Approach to the STEPP surface and make a topography AFM image with the scan size 20x20µm or larger. After obtaining the image with step sequences (Fig.1) choose the area ~5x5 µm between any two steps and get AFM-image with regular monatomic steps only.

- 3. Use the software filter "Plane Subtraction" to the image. (Fig.2)
- Now get height spectra using possibilities of your AFM software. 4.

5. Measure the inter-peak distance. To calibrate your AFM change the calibration constant while inter-peak distance becomes 0.31 nm. Please, remember that the experimental error of your measurement is the half width of the peaks on their half height, try to obtain the peak as narrow as possible! (Fig.3)

Code for ordering

STEPP

Test sample

AC Contact (AFM) techniques	AFM modes when the probe is enforced to oscillations being all the time in contact with the surface. In this case the surface area in the clos- est proximity of the probe becomes oscillating as well.
AC Magnetic Force Microscopy (AFM mode)	Two?pass AFM technique when magnetic probe oscillation parameters change due to the sample?probe magnetic interactions forming an image contrast.
Adhesion Force Imaging	A type of spec- troscopy?based imaging when force?distance curves are deter- mined for each point of the sur- face. In this case the surface adhesion can be mapped since it causes substantial differences between f?d curves when approaching and retracting the probe.

Atomic Force Acoustic Microcopy (AFAM)	AC Contact AFM mode when the sample is enforced to out?of?plane vibrations while the probe is in contact with the surface. Vibration free vi
AFAM	AC Contact AFM
resonance	mode when the
spectroscopy	sample is enforced
	to out of plane
	vibrations while the
	probe is in contact
	with the surface.
	During scanning the resonance frequency (or first mode frequenies) of
	supported cantilever vibration is registered in each point. It allows cal-
	culation and nano?scale mapping of the sample Young modulus.
Atomic Force	A type of scanning probe microscopy based on registration of atomic
Microcopy	forces that act on a sharp tip (sometimes specially coated) in very close
(AFM)	$\frac{\text{proximity to the surface.}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
AFM	A type of nano/scale surface modifications
dunography	face in comicontect mode
nlowing	lace in semicontact mode.
hiowing	

AFM	A type of nano?scale surface modifications	
lithography ? scratching	when the AFM probe is used to scratch the surface in contact mode.	

AFM oxidation lithography	A type of nano?scale surface modifications when the current?conducting AFM tip is used for local electro?chemical surface oxidation. Often the tip?formed oxide protrudes from the surface thus new surface topography can be engineered.	And codeboilingspor W-QC coating - Adsorbate TiO ₂ Ti native siO ₂ Si
Amplitude distance curves	A plot of probe oscillation amplitude variation when the probe is approached to or retracted from the sample surface.	A Angelbidde-Distance curves
Constant Current STM mode	STM mode when the feed?back mechanism makes the tunnel current constant between the probe and the surface; feed?back signal value in this case is used to image the surface topography.	Control Convertingence
Constant Force AFM mode	AFM mode when the system drives the probe over the surface so that it's deflection does not change (thus the force applied to the surface remains constant); feed?back signal value is used to image the surface topogn	Conside Four Mode

Constant	AFM mode when the	Constant Height mode	Constant Height mode
Height AFM	feed?back mechanism		A Scanner trajectory
mode	is disconnected and	Scanner motion trajectory	
	the scanner drives the	······ja	x
	probe over the surface		Cantilever deflection
	at constant z?signal;		
	cantilever deflection		x
	is used to monitor the		
	surface topography.		
Constant	STM mode when the	Constant Heidti mode	Constant Height mode
Height STM	feed?back mechanism		Scanner trajectory
mode	is disconnected and	Scanner motion trajectory	
	the scanner drives the		x
	probe over the surface	Scarmer	Tunnel current
	at constant z?signal;	Тір	
	the value of tunnel		X
	current is used to		
	image the surface topo	ography.	
Contact	AC Contact AFM	Contact 561	Contact EEM
Electric Force	mode when AC volt-	Scanner motion trajectory	Tip position
Microscopy	age is applied to the		·····
(AFM mode)	probe while scanning.		Cantilever deflection
	Changes in the ampli-	Si02	
	tude of cantilever	Si n+ n n+	Surface potential
	oscillations caused by		
	first harmonic of the		
	capacitive force form a	in image that reflects the	distribution of surface
	potential.		
Contact Error	Derivative of the	Contact Error mode	Contact Error mode
AFM mode	Constant Force AFM		Scanner trajectory
	mode. When surface	Scanner motion trajectory	
	relief changes are too		Deflection changing X
	abrupt, short?term		
	differences occur		Calculated profile
	between the probe		×
	signal, which is in		
	fact registered, and the	e set?point signal. These d	ifferences are used to

form an image contrast in this technique.

do Contact techniques Force AFM modes when the probe moves over the Repulsive force surface in a constant contact with it without Tip - Sample dista Attractive force

ntact regi

DC Magnetic	Two?pass AFM tech-	DC MFM	DC MPM
Force	nique when changes	Scanner motion trajectory	Profile (first pass)
Microscopy	in deflection of the		
(AFM mode)	cantilever caused by	Cantilever deflection by magnetic forces (second pass)	X
	the any tip?sample		Normal force (second pass)
	magnetic interactions		
	form an image con-		X
	trast.		
Dissipation	Two?pass AFM tech-	Dissipation Force Microscopy	Dissipation Force Microscopy
Force	nique when any		Profile (first pass)
Microscopy	tip?sample interac-	Scanner motion trajectory	
(AFM mode)	tions cause damping		X
	of the probe oscilla-		Piezodriver voltage (second pass)
	tions. It is quantified		
	and used to build an		X
	image.		
Electric Force	Two?pass AFM tech-	EFM	EFM.
Microscopy	nique when the oscil-	Scanner motion trajectory	Profile (first pass)
(AFM mode)	lating probe follows		
	the pre?determined	(second pass)	x
	surface landscape in a		Amplitude (second pass)
	non?contact manner;	n+ n n+	
	the surface potential	_	X
	and associated charges	can modulate oscillation	parameters (amplitude

DC Contact

(AFM) techniques

any oscillations.

and phase), and their differences form an image contrast.

Force?distance curves	A plot of distance lependence on the orces that act to the ip in the close prox- mity to the surface. These forces are recorded when the tip
	s approached to the surface or retracted from it.
Force modula- tion AFM mode	AC Contact AFM mode when the oscil- ating tip pushes down a local surface area to a depth depending on the ocal stiffness of the sample.
Frequency modulation AFM mode	Von?contact AFM echnique when the requency of the probe oscillation influenced by non?contact tip?sam- ple interaction serves as the feed?back parameter.
Kelvin Probe Microscopy (AFM mode)	Five?pass AFM tech- nique when the DC and AC potentials are applied to the tip pscillating in non?contact mode, the DC potential is adjusted to compen- sate the surface potential nulling the amplitude of the probe oscillation. Recording of the nulling potential applied for each point presents the map of surface potential distribution.

 A plot of the probe oscillation phase variation when the probe is

 Phase?distance

 curves

 surface.

Phase imaging	Semicontact AFM	Phase imaging mode	Phase Imaging mode
AFM mode	technique when a	M Piezodriver oscillations	Phase
in mout	nhase shift of the	Cantilever oscillations	
	probe oscillation is	$\phi_1 \qquad \phi_2 \qquad \phi_3$	X Des Gla
	used to form an	<u> </u>	rome
	image contrast the		
	nhase changes for	/	X
	surface areas of differ	ont stiffnoss adhesion an	d so on
Coopping	Two?page AFM toch	ent summess, aumesion, an	
Canacitanca	nique when AC	SCM	SCM
Microscony	notantial is applied	Scanner motion trajectory	Profile (first pass)
(noncostopy	to the medee occille	$\bigcup_{ac_0} Sin(\omega_0 \cdot t)$	
(noncontact	to the probe oscilla-	(2 (1) ₀ oscillations)	×
AFM mode)	tion is used to form		Amplitude (second pass)
	an image contrast;	n+ n n+	
	the phase changes		x
	for surface and the		1 1
	surface distribution of	t the tip?sample capacitan	ice derivative can be
	mapped by the oscilla	ting probe following pre?c	letermined surface land-
	scape in a non?contac	t mode; second harmonic	of cantilever oscillations
	amplitude variations	is detected.	
Scanning	A metallic or metalliz	ed AFM tip is used for im	aging the wafer topogra-
Capacitance	phy in conventional co	ontact mode. The tip also	serves as an electrode for
Microscopy	simultaneous measur	ing of the metal?silicon?ov	kide?semiconductor
(contact AFM	(MOS) capacitance.		
mode)			
Shear?force	A type of scanning	Shear Force Microscopy	Shear Force Microscopy
microscopy	probe microscopy	Scanner motion trajectory	Profile
	when laterally oscil-	Fiber probe Scanner	
	lating probe (optical	Plezodriven Tuning fork	x
	fiber) undergoes	Amplit	Vibration amplitude
	crucial changes in		
	oscillation amplitude		x
	in the close proximi-		
	ty to the sample surfa	ce. When performing the	feed?back control to
	maintain the oscillation	on amplitude constant the	e feed?back signal can be
	used to image the sur	face topography.	

Shear?force technology is the most common way to bring the optical fiber very close to the surface to perform the SNOM measurements.

SNOM	A type of scanning probe microscopy based on the registration of a neg-
	ligible light passed trough a sub?wave diaphragm in a close proximity to
	the object (at the distance of several nanometers where near?field effects
	occur); allows nano?scale object optical investigation overcoming the
	optics diffraction limits.
	•

SNOM lithography

A type of nano?scale surface modificationsraphywhen the laser?emitted light is applied to
photosensitive surface layers by the SNOM
technology.

SNOM	Scanning Near?field	Optical fiber SNOM Luminescence mode	SNOW Lummesonou mode
luminescence	Optical Microscopy	LASER	Profile
mode	mode when the light	Scener molen trajectory	
	brought by the opti-		x
	cal fiber excites the		Illumination
	luminescence of the		
	sample; emitted	Notch filter	X
	luminescence pho-		
	tons are then gath-		
	ered and detected.	РМТ	
	Scanning Near?field C	Optical Microscopy mode	when the light brought by
	the optical fiber is ref	lected by non?transparen	it sample and is then gath-
	ered and detected.		
SNOM	Scanning	SNOM Halleston mode	SHOOL Factoria mode
reflection	Near?field		Scanner motion trajectory
mode	Optical		
	Microscopy A Optical density		
	mode		
	when the	xPM	r internet in the second se

light brought by the optical fiber goes through the transparent sample and is then gathered and detected.

SNOM transmission mode	Scanning Near?field Optical Microscopy mode when the light brought by the opti- cal fiber goes through the trans- parent sample and is then gathered and detected.
Scanning	Group of modern microscopy methods – the sample surface properties
Probe	are studied by point by point scanning.
Microscopy (SPM)	
Scanning	A type of scanning probe microscopy based on registration of tunneling
Tunneling	current that occurs between a very sharp conductive tip and an object
Microscopy (STM)	in a close proximity of the object surface.
STM	A type of nano?scale surface modifications
lithography	when the STM probe is used for surface
	modification. The common way is to burn
	out the sample with high?current pulses
	locally.
STM	Different methods in

STM	Different methods in		
spectroscopy	the STM (like Barrier	I(V) Spectroscopy	Tunnel Current
	Height imaging,	Scanner motion trajectory	V
	Density of States	a	Height
	imaging, I(z)		
	Spectroscopy, or	L L	S-C Current X
	I(V) Spectroscopy)	0-0-0-	<u> </u>
	used to characterize		X

the electron properties of a surface or to make contrast images based on differences in these properties.

Two?pass Methods for complex (many?pass) AFM characteriza-AFM tion of object. The techniques first pass is per-

face topology. The subsequent pass(es) obtain additional information, for example, electrical, magnet or some other sample properties. Usually second pass scanning is performed in a non?contact mode when the probe follows the predetermined surface topography but moves a bit higher without touching the sample.

Semicontact	Semicontact AFM		
AFM mode	technique when the	Semiconact mode	Semicontact mode
(Intermittent	probe oscillates	A A sp - Semicontact oscillations	
mode)	above the surface		x
	contacting it inter-	A>A _{sp}	Amplitude
	mittently; the differ-		· · · · · · · · · · · · · · · · · · ·
	ence in oscillation		x
	frequency creates an		
	image contrast.		
Somicontact	Semicontact AFM		
	imaging technique	Semicontact Error mode	Serricontact Error mode

imaging technique error AFM mode based on a feed?back "error" signal: when surface topography changes are too abrupt, short?term differences occur

between the probe signal, which is in fact registered, and the set?point signal. This difference is used to form an image contrast.

Semicontact techniques

AFM techniques with the oscillating tip contacting ("touching") the surface periodically in the extreme points of its trajectory.

Spreading	DC Contact AFM	Spreading resistance imaging	Spreading resistance imaging
Resistance	technique when bias		Profile
Imaging	voltage is applied to	Scanner motion trajectory	
	the conducting tip;		x
	resulting current		Resistance
	through the sample	n+ A n n+	
	is measured.		X

Scan gallery and probe selection guide

Topography imaging

Name: Porcine kidney Cell SPM principle: Contact Error mode Scan size: 27x27 um Contact error mode AFM image of a part of living porcine kidney proximal tubule epithelial cell (LLC-PK1). The cytoskeleton of the cell is clearly visible. Image was obtained in the contact mode in a buffer solution at 37C. Sample courtesy of Prof. Tang Ming-Jer, Department of Physiology. National Cheng Kung University Medical College, Tainan, Taiwan (ROC).

Name: Glass-matrix of high-temperature coating SPM Principle: Semicontact mode Scan size: 2x2 um Gas-proof coating for the protection of carbon materials at extreme applications at temperatures above 1400oC. The bubble prolonged after the gas exit is presented. Image and sample courtesy of Golubev K.S., Pugatchiov K. E., Efimenko L.P., Institute of Silicate Chemistry RAS, Russia, Saint-Petersburg.

Name: Helicobacter pylori SPM principle: Semicontact mode Scan Size: 7.2x7.2 um Conversion of two cells of bacterium Helicobacter pylori into coccoid forms. Polished silicone covered by polymer. Image courtesy of Budashov I.A., Moscow State University, Institute of Biochemical Physics. Sample courtesy of Momynaliev K.T., Scientific Research Institute of Physical-Chemical Medicine, Moscow.

Name: DNA SPM principle: Non-Contact mode Scan Size: 220x220 nm Non-contact AFM phase contrast image of poly(dG)–poly(dG)–poly(dC) triplex DNA. Image courtesy of Lemeshko S., Klinov D., NT-MDT, Russia, Moscow.

Topography	
Contact mode	CSG01, CSG10
Non-contact mode	NGC01 NGC10 NGC02 NGC20
Semi-contact mode	115601, 115610, 115605, 115650
Non-contact mode	NSG01, NSG10, NSG03, NSG30

High resolution topography imaging

Name: Plasmid DNA SPM principle: Semicontact mode Size: 0.25x0.25 um Circular plasmid DNA (pEGFP, 3.4 kb) with local single-stranded loops deposited on HOPG substrate by using graphite modifier (GM). The image was obtained with Ntegra SPM in semicontact mode in air. Supersharp NSG01_DLC probe was used. Image courtesy of Savvateev M, NT-MDT, Moscow, Russia. The sample was kindly a

Image courtesy of Savvateev M, NT-MDT, Moscow, Russia. The sample was kindly given by I. I. Agapov and E.A. Tonevitsky, Institute for transplantation and artificial organs, Moscow, Russia.

High Resolution Contact mode	CSG01, CSG10, CSC05
Non-contact mode	NSG01_DLC, NSG10_DLC, NSC05, NSG01, NSG10, NSG03, NSG30

Elastic properties

Phase imaging:

Name: Polyphenylenevinylene SPM principle: Phase Imaging mode Size: 3x3 um Mixture of two different types of PPV (see m. Ringed PPV molecules). Initially PPV blend film was deposited on another polymer and then removed by

floating. Resulted structure is explained by dewetting (structure on topography) and demixing (pronounced phase contrast) on the interface between layer of two PPVs and substrate.

Force Modulation:

Name: AlGaN/GaN superlattice cross-section SPM principle: Force Modulation mode Size: 500x500 nm AFM image of AlGaN/GaN superlattice with 74 Angstroms pitch made in local elasticity (force modulation) mode. Image courtesy of Alexander Ankudinov and M. Dunaevsky (group of A.Titkov), Ioffe Physico-Technical Institute, St. Petersburg, Russia.

AFAM:

Name: Crystals of polyethylene SPM principle: AFAM Size: 5.6x5.6 um Single crystals of polyethylene on mica imaged with amplitude detecting AFAM. The sample was kindly given by Dr. M. Tian (NTI-Europe, The Netherlands). Image courtesy of A. Alexeev.

Lateral force Microscopy:

Name: Pseudomonas bacteria SPM principle: Lateral Force Imaging Size: 2.3x2.3x0.1 um LFM image of pseudomonas bacteria obtained in air. Image courtesy of M.N. Savvateev, NT-MDT.

Elastic properties Phase imaging	NSG01, NSG10, NSG03, NSG30
AFAMForce Modulation	FMG01, CSG01 CSG10

Spectroscopy

Force Distance Curves:

Name: Force curve SPM principle: Force-distance curves Force curve for single biotin-streptavidin interaction. Unbinding force of 45 pN was measured between probe, modified with PEG-tethered biotin, and streptavidin covered mica surface. Image courtesy of M.Savvateev, NT-MDT, Moscow, Russia.

Adhesion Force Imaging:

Name: Force curve **SPM principle:** Force-distance curves Force curve for single biotin-streptavidin interaction. Unbinding force of 45 pN was measured between probe, modified with PEG-tethered biotin, and streptavidin covered mica surface. Image courtesy of M.Savvateev, NT-MDT, Moscow,

Russia.

Spectroscopy Force Distance Curves

Adhesion Force Imaging

CSG01. CSG10. FMG01. NSG01. NSG03 CSG01 CSG10

Electrical properties

Many-pass techniques

Electric Force Microscopy:

Name: The EFM image of carbon nanotubes SPM principle: EFM Size: 1700x1700 nm The electrostatic force microscopy image of carbon nanotubes. Scan size is 1,7 um. Image courtesy of Dr. A. Temiryazev, NT-MDT, Moscow, Russia.

Kelvin Probe Microscopy:

Name: Photo-sensitive polymer on PCBM film SPM principle: Kelvin Probe Microscopy Size: 8x8 um Topography (left) and SKM image (right) of film cast from solution of photosensitive polymer film and PCBM. Image courtesy of Evgeny Kuznetsov. The sample was kindly given by Dr. Igor

Sokolik, Konarka Technologies Inc.

Scanning capacitance Microscopy:

Name: Test grating with different doping stripes SPM principle: Scanning Capacitance Microscopy Size: 10.8x10.7 nm

Test grating on the silicon wafer with concentration Nn=1015 cm-3, step 3 μ m, height 0,1 μ m from SiO2. Ion implantation by boron with E=30 keV and dose

150mkCoulomb/cm2, then pressing during 60 minutes under temperature T=1000 C and finally SiO2 etch removal have been done. As result the following structure was obtained: left image - topography, right image - SCM.

Image courtesy of A.Iconnicov, State Research Institute of Physical Problems & NT-MDT, Moscow, Russia.

Many-pass techniques	
Electric Force Microscopy —	
Kelvin Probe Microscopy ———	NSCO1 NSC10 NSCO3 FMCO1 - with Au/Pt/TiN
Voltage Modulation	NSG01 NSG10 NSG03, 1MG01 - WIII AW1 0 1M
Scanning capacitance Microscopy	

Contact techniques

Contact Scanning Capacitance Microscopy:

Name: Test structure SPM principle: Contact Scanning Capacitance Microscopy Size: 18x28 um Test structure on the base of SiO2 stripes height 0.1µm grating on the silicon wafer. Ion implantation by boron with E=100 keV, annealing and SiO2 layer etching was employed. On the resulting structure following images were obtained: Fig. 1 -Topography of test structure (contact

mode AFM), Fig. 2. - Profile of test structure, Fig. 3. - Contact SCM image of the same area, Fig. 4. - Profile of Contact SCM image.

Image courtezy of V. Polyakov, NT-MDT, Moscow, Russia.

AcContact Piezoresponse Force Microscopy:

Name: Lithiumniobate **SPM principle:** Piezoresponse Force Microscopy Size: 62x62 um Lithiumniobate is an important nonlinear optical material. Periodically poled crystals can be used for efficient second harmonic generation. The sample was kindly given by C. Gawith Optoelectronics Research Centre University of Southampton. Image courtesy of T. Jung, A. Hoffmann, E. Soergel University of Bonn.

Spreading Resistance Imaging:

Name: Distribution of current on the surface of two semiconducting polymer blend.

SPM principle: Spreading Resistance Imaging

Size: 2.7x2.7 um

Distribution of current on the surface of two semiconducting polymer blend.

The sample was kindly given by Dr. M.M. Koetse, Dr. J. Loos (Eindhoven

University of Technology, The Netherlands). Image courtesy of A. Alexeev. (NT-MDT).

Contact techniques Contact Scanning Capacitance Microscopy AcContact Piezoresponse Force Microscopy-Spreading Resistance Imaging ____

CSG01. CSG10. FMG01 - with Au/Pt/TiN

Surface Modulation

AFM Oxidation Lithography

Name: Thin Ti film SPM principle: AFM Oxidation Lithography Size: 2x2 um The image was made by local anodic oxidation nanolithography of a thin Ti film on SPM Solver P47 Pro in semicontact mode, by using NSG 11 cantilevers with conducting W2C covering, at relative humidity of 70 %. Image courtesy of Smirnov V.A., Taganrog Technological Institute Of Southern Federal University.

AFM Lithography – Scratching

Name: Al surface SPM Principle: AFM Scratching Lithography Scan size: 1.6 x 1.6 um Scratched with 100 nN/m cantilever polished Al surface.

AFM Lithography – Dynamic Plowing

Name: AFM Resonant Mode Lithography SPM principle: AFM Lithography - Dynamic Plowing Size: 1.2x2.3 um Resonance SPM modification of polycyanoacrylate film on silicon. Word "Science" in Chineese.

AFM Lithography – Dynamic Plowing

Name: SNOM lithography SPM principle: SNOM Lithography Size: 16x16 um SNOM lithography on the positive photoresist. Resolution 100nm. Images courtesy of Igor Dushkin, NT-MDT.

Surface Modulation AFM Oxidation Lithography — AFM Lithography – Scratching — AFM Lithography – Dynamic Plowing — SNOM Lithography —

DCP11, DCP20; NSG01, NSG10, NSG30 - with Pt/TiN

SNOM probes

Optical properties

Shear Force Microscopy

Name: DNA shear-force image SPM principle: Shear Force Microscopy Size: 1.3x1.3 nm DNA plasmid pGem7zf+ (Promega) 3000 b. p. linearized with the SmaI endonuclease deposited on freshly cleaved mica. DNA01 test sample was measured by Solver P47H using the Shear Force head. Humidity - 1-10%.

Transmission Mode

Name: Ferrite-garnet film SPM principle: Transmission mode Size: 105x105 um Magneto-optical image (transmission mode) of ferrite-garnet film. Images courtesy of Igor Dushkin, NT-MDT.

Reflection Mode

Name: Quantum dots SPM principle: SNOM Size: 7x7 um Shear Force (topography) (a) and reflection (b) images of In-Ga quantum dots made with the use of He-Cd 442 nm laser. Images courtesy of Igor Dushkin, NT-MDT.

Lumenscence Mode

Name: Latex balls SPM Principle: Lumenscence Latex balls Upper picture - latex ball images obtained in Shear Force mode, lower picture - latex balls image obtained in Luminescence mode.

Optical properties
Shear Force Microscopy
Transmission Mode
Reflection Mode
Lumenscence Mode

MF001, MF002, MF003, MF004, MF005

Magnetic properties

Shear Force Microscopy

Name: Magnetic domains of Yttrium Iron Garnet SPM principle: AC MFM Size: 60x60 um Different surface domain structures of inhomogenious

films of Yttrium Iron Garnet (YIG). YIG film has substantial variation of anisotropy field across the film thickness. Images courtesy of A.G. Temiryazev and M.P. Tikhomirova, Institute of Radioengineering & Electronics RAS, Fryazino, Russia. A.G. Temiryazev et al. Proceedings of SPM-2002, Nizhnii Novgorod, Russia, 129-131.

Magnetic properties	
AC MFM	

NSG01/Co, FMG01/Co

DC MFM -

Table of availableprobes

Probe series name:

		1 / T	I N
Recommended		יי א	
measuring mode:			
N - noncontact, semicontact			
C - contact			
Probe series	-		
Tip coating		_	

Probe short specification:

Probe series	Shape	Typical Force Constant, N/m	Typical Resonant Frequency, kHz
CSC01	Rect	0.03	9.8
CSG10	Rect	0.11	22
CSC05	Rect	0.11	22
NSG01	Rect	5.1	150
NSG10	Rect	11.8	240
NSG30	Rect	40	320
NSG03	Rect	1.74	90
FMG01	Rect	3	60
NSC05	Rect	11.8	240
DCP11	Rect	5.5	150
	Rect	11.5	255
DCP20	Triang	48	420

				1 1 2		1.444	
Type*	NSG10	NSG01	NSG30	NSG03	FMG01	CSG10	CSG01
Uncoated	NSG10	NSG01	NSG30	NSG03	FMG01	CSG10	CSG01
PtIr coated	NSG10/Pt	NSG01/Pt	NSG30/Pt	NSG03/Pt	FMG01/Pt	CSG10/Pt	CSG01/Pt
TiN coated	NSG10/TiN	NSG01/TiN	NSG30/TiN	NSG03/TiN	FMG01/TiN	CSG10/TiN	CSG01/TiN
Au coated	NSG10/Au	NSG01/Au	NSG30/Au	NSG03/Au	FMG01/Au	CSG10/Au	CSG01/Au
Co/Cr coated		NSG01/Co			FMG01/Co		
Whisker type	NSC05					CSC05	
DLC	NSG10_DLC	NSG01_DLC					
Bare	NSG10/Bare	NSG01/Bare	NSG30/Bare	NSG03/Bare	FMG01/Bare	CSG10/Bare	CSG01/Bare
Tipless	NSG10/Tipless	NSG01/Tipless	NSG30/Tipless	NSG03/Tipless	FMG01/Tipless	CSG10/Tipless	CSG01/Tipless

* - all probes (except for bare probes) have Au reflective coating any coating from the table is on the probe tip side

Scanning	Operation mode	Air (Vacuum	n) ambience	Coating on the tip	Reflective side
mode		Force constant, N/m	Res.frequency, kHz	side	coating
	Topography	0.1-2	10-20	NC	NC, Au
1	Lateral Force (LFM)	0.01-0.1	10-20	NC	NC, Au
laci	Force modulation	1-5	60-100	NC	NC, Au
uo	Adhesion Force	0.1-2	10-40	NC	NC, Au
)	Spreading Resistance (SRM)	0.1-5	10-100	TiN, PtIr	NC, Au
	AFAM	1-5	5-100	NC	NC, Au
	Topography	5-50	100-400	NC	NC, Au
oct/	Phase Imaging	5-50	100-400	NC	NC, Au
ano anta	Electrostatic Force (EFM)	1-5	50-100	TiN, PtIr	NC, Au
oot ouit	Scanning Capacitance,	1-5	50-100	TiN, PtIr	NC, Au
uəs 10N	Scanning Kelvin (SCM, SKM)				
	Magnetic Force (MFM)	1-5	50-100	CoCr	NC, Au
		Liquid ar	nbience		
1	Topography	0.1-2	10-20	NC	NC, Au
tac	Lateral Force (LFM)	0.01-0.1	10-20	NC	NC, Au
uo	Force modulation	1-5	60-100	NC	NC, Au
)	Adhesion Force	0.1-2	10-40	NC	NC, Au
ict ict	Topography	5-50	100-400	NC	NC, Au
nta Nor	Phase Imaging	5-50	100-400	NC	NC, Au

Recommended probe characteristics for scanning modes

NC - uncoated

Table of available probes

Quick selection table by applications

Contact modes

			Air			Liquid			
	Topography	LFM	Force Modulation	Adhesion Force	SRM	Topography	LFM	Force Modulation	Adhesion Force
CSG01	•	•		•		•	•	•	
CSG01/Pt					•				
CSG01/TiN					•				
CGS01/Au				•					•
CSG10	•		•	•		•		•	•
CSG10/Pt					•				
CSG10/TiN					•				•
CGS010/Au						•			
CSG05	•		•			•			
NSG03/Pt					•				
NSG03/TiN					•				
NSG01/Pt					•				
NSG01/TiN					•				
FMG01			•						
FMG01/Pt					•				
FMG01/TiN					•				

Noncontact modes

					Air					Liq	uid
	Topography	1nm resolution Topography	Deep Narow Holes Topography	Phase Imaging	LAO LIthography	EFM	SCM, SKM	MFM	Semicontact Error Mode	Topography	Phase Imaging
NSG01	•			•						•	•
NSG01_DLC	•	•									
NSG01/Pt					•	•	•				
NSG01/TiN					•		•				
NGS01/Au							•				
NSG01/Co				-				٠	·		
NSG10	•			٠					· · · · · · · · · · · · · · · · · · ·		
NSG10_DLC	•	•									
NSG10/Pt					•		•				
NSG10/TiN				-	•		•		·		
NGS10/Au							•				
NSG30									٠	٠	٠
NSG30/Pt					•						
NSG30/TiN					•						
NSG30/Au					•						
NSG03	٠										
NSG03/Pt						•	•				
NSG03/TiN						•					
NSC05	٠		•	٠							
DCP20, DCP11					•						
FMG01	٠			٠						٠	•
FMG01/Pt						•	•				
FMG01/TiN						•	•				
FMG01/Au						•	•				
FMG01/Co								٠			
HA_NC	٠			٠						٠	٠

Products by groups

High Resolution "Golden" silicon AFM probes

Product	Description	Page
CSG01/15	15 chips for contact mode CSG01 series, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	11
CSG01/50	50 chips for contact mode CSG01 series, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	11
CSG01/Au/15	15 chips of Contact SPM probes CSG01 series with Au conductive coat- ing, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	13
CSG01/Au/50	50 chips of Contact SPM probes CSG01 series with Au conductive coat- ing, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	13
CSG01/Pt/15	15 chips of Contact SPM probes CSG01 series with Pt conductive coat- ing, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	13
CSG01/Pt/50	50 chips of Contact SPM probes CSG01 series with Pt conductive coat- ing, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	13
CSG01/TiN/15	15 chips of Contact SPM probes CSG01 series with TiN conductive coating, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	13
CSG01/TiN/50	50 chips of Contact SPM probes CSG01 series with TiN conductive coating, resonant frequency 4-17kHz, force constant 0,003-0,13N/m.	13
CSG10/15	15 chips for contact mode CSG10 series, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	12
CSG10/50	50 chips for contact mode CSG10 series, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	12
CSG10/Au/15	15 chips of Contact SPM probes CSG10 series with Au conductive coat- ing, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	13
CSG10/Au/50	15 chips of Contact SPM probes CSG10 series with Au conductive coat- ing, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	13
CSG10/Pt/15	15 chips of Contact SPM probes CSG10 series with Pt conductive coat- ing, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	13

CSG10/Pt/50	50 chips of Contact SPM probes CSG10 series with Pt conductive coat-	13
	ing, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	
CSG10/TiN/15	15 chips of Contact SPM probes CSG10 series with TiN conductive coat-	13
	ing, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	
CSG10/TiN/50	50 chips of Contact SPM probes CSG10 series with TiN conductive coat-	13
	ing, resonant frequency 8-39kHz, force constant 0,01-0,5N/m.	
NSG01/15	15 chips for noncontact/semicontact modes NSG01 series, resonant fre-	6
	quency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/50	50 chips for noncontact/semicontact modes NSG01 series, resonant fre-	6
	quency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/Au/15	15 chips of Noncontact SPM probes NSG01 series with Au conductive	13
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/Au/50	50 chips of Noncontact SPM probes NSG01 series with Au conductive	13
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/Co/15	15 chips of Noncontact SPM probes NSG01 series with CoCr magnetic	14
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/Co/50	50 chips of Noncontact SPM probes NSG01 series with CoCr magnetic	14
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/Pt/15	15 chips of Noncontact SPM probes NSG01 series with Pt conductive	13
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/Pt/50	50 chips of Noncontact SPM probes NSG01 series with Pt conductive	13
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/TiN/15	15 chips of Noncontact SPM probes NSG01 series with TiN conductive	13
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG01/TiN/50	50 chips of Noncontact SPM probes NSG01 series with TiN conductive	13
	coating, resonant frequency 87-230kHz, force constant 1,45-15,1N/m.	
NSG03/15	15 chips for noncontact/semicontact modes NSG03 series, resonant fre-	7
	quency 47-150kHz, force constant 0,35-5,1N/m.	
NSG03/50	50 chips for noncontact/semicontact modes NSG03 series, resonant fre-	7
	quency 47-150kHz, force constant 0,35-5,1N/m.	
NSG03/Pt/15	15 chips of Noncontact SPM probes NSG03 series with Pt conductive	13
	coating, resonant frequency 47-150kHz, force constant 0,35-5,1N/m.	
NSG03/Pt/50	50 chips of Noncontact SPM probes NSG03 series with Pt conductive	13
	coating, resonant frequency 47-150kHz, force constant 0,35-5,1N/m.	
NSG03/TiN/15	15 chips of Noncontact SPM probes NSG03 series with TiN conductive	13
	coating, resonant frequency 47-150kHz, force constant 0,35-5,1N/m.	
NSG03/TiN/50	50 chips of Noncontact SPM probes NSG03 series with TiN conductive	13
	coating, resonant frequency 47-150kHz, force constant 0,35-5,1N/m.	

NSG10/15	15 chips for noncontact/semicontact modes NSG10 series, resonant fre-	8
NGG10/F0	quency 140-390kHz, force constant 3,1-37,6N/m.	
NSG10/50	50 chips for noncontact/semicontact modes NSG10 series, resonant fre-	8
	quency 140-390kHz, force constant 3,1-37,6N/m.	
NSG10/Au/15	15 chips of Noncontact SPM probes NSG10 series with Au conductive	13
	coating, resonant frequency 140-390kHz, force constant 3,1-37,6N/m.	
NSG10/Au/50	50 chips of Noncontact SPM probes NSG10 series with Au conductive	13
	coating, resonant frequency 140-390kHz, force constant 3,1-37,6N/m	
NSG10/Pt/15	15 chips of Noncontact SPM probes NSG10 series with Pt conductive	13
	coating, resonant frequency 140-390kHz, force constant 3,1-37,6N/m.	
NSG10/Pt/50	50 chips of Noncontact SPM probes NSG10 series with Pt conductive	13
	coating, resonant frequency 140-390kHz, force constant 3,1-37,6N/m.	
NSG10/TiN/15	15 chips of Noncontact SPM probes NSG10 series with TiN conductive	13
	coating, resonant frequency 140-390kHz, force constant 3,1-37,6N/m.	
NSG10/TiN/50	50 chips of Noncontact SPM probes NSG10 series with TiN conductive	13
	coating, resonant frequency 140-390kHz, force constant 3,1-37,6N/m.	
NSG30/15	15 chips for noncontact/semicontact modes NSG30 series, resonant fre-	9
	quency 240-440kHz, force constant 22-100N/m.	
NSG30/50	50 chips for noncontact/semicontact modes NSG30 series, resonant fre-	9
	quency 240-440kHz, force constant 22-100N/m.	
NSG30/Au/15	15 chips of Noncontact SPM probes NSG30 series with Au conductive	13
	coating, resonant frequency 240-440kHz, force constant 22-100N/m.	
NSG30/Au/50	50 chips of Noncontact SPM probes NSG30 series with Au conductive	13
	coating, resonant frequency 240-440kHz, force constant 22-100N/m.	
NSG30/Pt/15	15 chips of Noncontact SPM probes NSG30 series with Pt conductive	13
	coating, resonant frequency 240-440kHz, force constant 22-100N/m.	
NSG30/Pt/50	50 chips of Noncontact SPM probes NSG30 series with Pt conductive	13
	coating, resonant frequency 240-440kHz, force constant 22-100N/m.	
NSG30/TiN/15	15 chips of Noncontact SPM probes NSG30 series with TiN conductive	13
	coating, resonant frequency 240-440kHz , force constant 22-100N/m.	
NSG30/TiN/50	50 chips of Noncontact SPM probes NSG30 series with TiN conductive	13
	coating, resonant frequency 240-440kHz, force constant 22-100N/m.	
FMG01/15	15 chips for noncontact/semicontact modes FMG01 series, resonant fre-	10
	guency 50-70kHz, force constant 1-5N/m.	
FMG01/50	50 chips for noncontact/semicontact modes FMG01 series, resonant fre-	10
	guency 50-70kHz, force constant 1-5N/m.	
FMG01/Au/15	15 chips of Noncontact SPM probes FMG01 series with Au conductive	13
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	-
1		

FMG01/Au/50	50 chips of Noncontact SPM probes FMG01 series with Au conductive	13
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	
FMG01/Co/15	15 chips of Noncontact SPM probes FMG01 series with CoCr magnetic	14
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	
FMG01/Co/50	50 chips of Noncontact SPM probes FMG01 series with CoCr magnetic	14
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	
FMG01/Pt/15	15 chips of Noncontact SPM probes FMG01 series with Pt conductive	13
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	
FMG01/Pt/50	50 chips of Noncontact SPM probes FMG01 series with Pt conductive	13
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	
FMG01/TiN/15	15 chips of Noncontact SPM probes FMG01 series with TiN conductive	13
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	
FMG01/TiN/50	50 chips of Noncontact SPM probes FMG01 series with TiN conductive	13
	coating, resonant frequency 50-70kHz, force constant 1-5N/m.	

"Whisker Type" probes

Product	Description	Page
CSC05/5	5 chips "Whisker Type" probes for contact modes, resonant frequency	25
	8-39kHz, force constant 0,01-0,5N/m.	
NSC05/5	5 chips "Whisker Type" probes for noncontact/semicontact modes,	25
	resonant frequency 140-390kHz, force constant 3,1-37,6N/m.	

SNOM probes

Product	Description	Page
MF001/10	Set of 10 SNOM probes (wavelength 400-550nm), without turning forks	32
MF002/10	Set of 10 SNOM probes (wavelength 450-600nm), without turning forks.	32
MF003/10	Set of 10 SNOM probes (wavelength 600-770nm), without turning forks.	32
MF004/10	Set of 10 SNOM probes (wavelength 780-970nm), without turning forks.	32
MF005/10	Set of 10 SNOM probes (wavelength 980-1600nm), without turning forks	32
TF001/10	Set of 10 tuning forks	35

Super Sharp DLC tips

Product	Description	Page
NSG01_DLC/10	10 chips of Super Sharp Diamond-Like Carbon (DLC) tips with typical	29
	curvature radius 1nm grown on the cantilever series NSG01.	
NSG01_DLC/50	50 chips of Super Sharp Diamond-Like Carbon (DLC) tips with typical	29
	curvature radius 1nm grown on the cantilever series NSG01.	
NSG10_DLC/10	10 chips of Super Sharp Diamond-Like Carbon (DLC) tips with typical	29
	curvature radius 1nm grown on the cantilever series NSG10.	
NSG10_DLC/50	50 chips of Super Sharp Diamond-Like Carbon (DLC) tips with typical	29
	curvature radius 1nm grown on the cantilever series NSG10.	

Diamond Coated Conductive Probes

Product	Description	Page
DCP20/15	15 chips of Diamond Coated Conductive Probes, resonant frequency 260-630kHz, force constant 28-91N/m.	21
DCP20/50	50 chips of Diamond Coated Conductive Probes, resonant frequency 260-630kHz, force constant 28-91N/m.	21
DCP11/15	15 chips of Diamond Coated Conductive Probes, resonant frequency 190-325kHz, 115-190kHz, force constant 5,5-22,5N/m, 2,5-10N/m.	20
DCP11/50	50 chips of Diamond Coated Conductive Probes, resonant frequency	20

Calibration Gratings

Product	Description	Page
SNG01	Standard test sample for Scanning Near Field Optical Microscope	36
TDG01	Diffraction grating TDG01 is intended for submicron calibration	42
	scanning probe microscopes in the X or Y direction.	
TGG1	Test grating TGG1 is intended for SPM calibration in X or Y axis,	41
	detection of lateral and vertical scanner nonlinearity, detection of	
	angular distortion, tip characterization.	
TGQ1	Calibration grating TGQ1 is intended for simultaneous calibration in	38
	X,Y,and Z directions.	
TGS1	Grating set for Z-axis SPM calibration with three different height	43
	range –20±1.5nm, 100±2nm, 500±3nm.	
TGS1_PTB	Calibration grating set TGS1 (consists of three gratings TGZ1, TGZ2,	45
	TGZ3) with PTB traceable certificate (step heights 20 ± 1 nm,	
	100±1.2nm, 500±1.5nm).	
TGS2	Grating set for SPM lateral and vertical calibration, detection of lateral	47
	non-linearity, hysteresis, creep, and cross-coupling effects, determination	
	of the tip shape.	
TGSFull	Full set of calibration standards for SPM lateral and vertical calibration	48
	(including submicron calibration and simultaneous calibration in X, Y	
	and Z directions) , detection of lateral non-linearity, hysteresis, creep, and	
	cross-coupling effects, determination of the tip shape.	
TGT1	Test grating TGT1 is intended for for 3-D visualization of the scanning	39
	tip, determination of tip sharpness parameters, tip degradation and	
	contamination control.	
TGX1	Test grating TGX1 is intended for lateral calibration of SPM scanners,	40
	detection of lateral non-linearity, hysteresis, creep, and cross-coupling	
	effects, determination of the tip aspect ratio.	
TGZ1	Calibration grating TGZ1 for SPM Z-axis calibration (step height	37
	20±1nm).	
TGZ2	Calibration grating TGZ2 for SPM Z-axis calibration (step height	37
	100±2nm).	
TGZ3	Calibration grating TGZ1 for SPM Z-axis calibration (step height	37
	500±3nm).	

HOPG (Highly Oriented Pyrolitic Graphite)

Product	Description	Page
GRAS/1.2	HOPG ZYA Quality, piece thickness 1,2±0,2mm, mosaic spread	50
	0.4-0.7 degrees	
GRAS/1.5	HOPG ZYA Quality, piece thickness 1,5±0,2mm, mosaic spread	50
	0.4-0.7 degrees	
GRBS/1.2	HOPG ZYB Quality, piece thickness 1,2±0,2mm, mosaic spread	50
	0.8-1.2 degrees	
GRBS/1.7	HOPG ZYB Quality, piece thickness 1,7±0,2mm, mosaic spread	50
	0.8-1.2 degrees	
GRBS/2.0	HOPG ZYB Quality, piece thickness 2,0±0,2mm, mosaic spread	50
	0.8-1.2 degrees	
GRHS/1.2	HOPG ZYH Quality, piece thickness 1,2±0,2mm, mosaic spread	50
	3.5-5.0 degrees	
GRHS/1.7	HOPG ZYH Quality, piece thickness 1,7±0,2mm, mosaic spread	50
	3.5-5.0 degrees	
GRHS/2.0	HOPG ZYH Quality, piece thickness 2,0±0,2mm, mosaic spread	50
	3.5-5.0 degrees	

Test samples

Product	Description	Page
DNA01	Long-life, stable and indestructible biological test sample for AFM investigation in air.	52
STEPP	STEPP is a Silicon Test Echeloned Pattern for AFM height calibrating in angstrom and single nanometer intervals by the naturally calibrated monoatomic silicon step with the height 0.31nm.	53